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Abstract

It was indicated (Yu 2007 Phys. Rev. A 75 066301) that a previously proposed
quantum secret sharing (QSS) protocol based on Smolin states (Augusiak 2006
Phys. Rev. A 73 012318) is insecure against an internal cheater. Here we
build a different QSS protocol with Smolin states alone, and prove it to be
secure against known cheating strategies. Thus we open a promising venue
for building secure QSS using merely Smolin states, which is a typical kind of
bound entangled states. We also propose a feasible scheme to implement the
protocol experimentally.

PACS numbers: 03.67.Hk, 03.67.Dd

1. Introduction

The properties of Smolin states [1] have attracted great interest recently. It was shown
[2, 3] that they can maximally violate simple correlation Bell inequalities, and thus reduce
communication complexity. On the other hand, as a typical kind of bound entangled (i.e.,
cannot be distilled to a pure entangled form with local operations and classical communications
(LOCC)) states, Smolin states do not allow for secure key distillation. This indicates that
neither entanglement nor maximal violation of Bell inequalities implies directly the presence
of a quantum secure key. Thus how useful Smolin states can be for quantum cryptography
becomes an intriguing question. In particular, whether Smolin states can lead to secure
quantum secret sharing (QSS) [4, 5] was left as an open question in [2, 3]. This question
was further indicated to be non-trivial by [6], in which an explicit cheating strategy was
proposed, showing that a class of QSS protocols using Smolin states can be broken if one of
the participants is dishonest.

In this paper, a four-party QSS protocol based on Smolin states is proposed, and proven
to be secure against the cheating strategy proposed in [6] as well as other known attacks. A
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feasible scheme for implementing our protocol experimentally is proposed. Building multi-
party secure QSS protocols on generalized Smolin states [2] is also addressed. These findings
may help to answer the question of whether Smolin states and other bound entangled states
can lead to secure QSS.

2. The original protocol and the cheating strategy

The original Smolin state is a mixed state of four qubits A,B,C and D described by the
density matrix

ρS
ABCD = 1

4 (|�+〉AB〈�+| ⊗ |�+〉CD〈�+| + |�−〉AB〈�−| ⊗ |�−〉CD〈�−|
+ |�+〉AB〈�+| ⊗ |�+〉CD〈�+| + |�−〉AB〈�−| ⊗ |�−〉CD〈�−|). (1)

Here |�±〉 = (|00〉 ± |11〉)/√2 and |�±〉 = (|01〉 ± |10〉)/√2 denote the four Bell states.
Now consider the task of QSS among four parties: Alice, Bob, Charlie and Diana. The

model of QSS studied in this paper includes the following essential features. (I) The goal
of the process is that Alice, who has a classical secret bit to be shared, encodes the bit with
certain quantum states and sends them to the other three parties, so that they can retrieve the
secret bit if and only if all the three of them collaborate. (II) In QSS, it is generally assumed
that Alice always acts honestly. That is, we do not consider the case where Alice wants to
cause the participants to accept inconsistent versions of her secret bit. (III) A QSS protocol
is called secure if it can stand the following two types of attacks, (1) ‘passive’ attacks, i.e.,
eavesdropping from external attackers, and (2) ‘active attacks’, i.e., one or some of the legal
participants trying to gain non-trivial amount of information on the secret bit without the
collaboration of all participants (except Alice).

Using other types of quantum states to accomplish QSS has already been well studied
in literatures [4, 5]. What we focus on in this paper is the interesting question raised by
[2, 3] whether QSS can be accomplished using quantum states having the form of
equation (1), which is a typical example of bound entangled states. In [6], the following
QSS protocol was studied.

2.1. The original protocol

Alice prepares a 4-qubit Smolin state in the form of equation (1), and she keeps qubit A to
herself, while sending qubit B to Bob, qubit C to Charlie and qubit D to Diana respectively.
Each party then measures an arbitrary Pauli matrix σi of his/her respective qubit and obtains a
result rj ∈ {0, 1} (j = A,B,C,D). Then all the parties announce publicly which observable
they measured. If all of them measured the same observable, then from equation (1) it can be
seen that their results always satisfy rA ⊕ rB ⊕ rC ⊕ rD = 0 (⊕ means addition modulo 2).
Therefore, all the three parties, Bob, Charlie, and Diana, together can reconstruct Alice’s
secret bit rA.

It was proven in [2] that such a protocol would be secure against the ‘passive’ attacks of
external eavesdroppers. However, it was pointed out in [6] that the protocol would be insecure
if the internal participant Bob cheats with the following intercept-resend strategy.

2.2. The cheating strategy

Bob intercepts qubits C and D sent to Charlie and Diana respectively by Alice, and measures
them in the Bell basis. This makes the Smolin state, equation (1), collapse into a tensor product
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of two Bell states with the same form

|ψ〉ABCD = |ϕ〉AB ⊗ |ϕ〉CD. (2)

Here |ϕ〉 is one of the four Bell states |�±〉 and |�±〉, and from the result of his measurement,
Bob knows which Bell state |ϕ〉 is. He then resends the two qubits of such a Bell state to
Charlie and Diana respectively. Since the Smolin state is merely a mixture of the product
states in the form of equation (2) where |ϕ〉 covers all the four possible choices |�±〉 and |�±〉,
the states owned by Alice, Charlie and Diana in this case show no difference from those in
the honest protocol. But since qubit B owned by Bob is directly correlated with Alice’s qubit
A now, Bob alone can know Alice’s secret bit rA when they measure the same observable,
without the help of Charlie and Diana.

This strategy is not only adoptable by Bob. For example, consider that Charlie intercepts
qubits B and D and measures them in the Bell basis. Note that when swapping the position of
two of the qubits (e.g., B and C ), |�±〉AB ⊗ |�±〉CD can be rewritten as

|�±〉AB ⊗ |�±〉CD −→ 1
2 (|�+〉AC ⊗ |�+〉BD + |�−〉AC ⊗ |�−〉BD ± |�+〉AC ⊗ |�+〉BD

± |�−〉AC ⊗ |�−〉BD). (3)

A similar expression can also be found for |�±〉AB ⊗ |�±〉CD . Therefore, after Charlie’s
measurement, the Smolin state, equation (1), will collapse into

|ψ〉ACBD = |ϕ〉AC ⊗ |ϕ〉BD, (4)

where |ϕ〉 is one of the four Bell states |�±〉 and |�±〉. Comparing with equation (2), we can
see that Charlie can cheat with the same strategy. So does Diana.

3. A simplified cheating strategy

Defeating this cheating alone is easy. Since it requires the cheater to perform joint measurement
on the qubits of the other two parties, we can restrict Alice to sending the qubits one at a time.
That is, she does not send the qubit to the next party until the receipt of the qubit sent to the last
party was confirmed. With this method, the cheater can never have the qubits of the other two
parties simultaneously. Thus he cannot perform joint measurement on them and the strategy
is defeated.

Nevertheless, we would like to pinpoint out that there is an even more simple cheating
strategy which does not require any joint measurement. The cheater can simply intercept every
qubit and measure the same observable of them (including his own one). Then he resends the
measured qubits to the corresponding parties. As a result, if Alice also measured the same
observable of her qubit, the cheater can infer her result since he has measured all the other
three qubits. Else if Alice measured a different observable, the result of the four qubits will
not have any correlation so that the cheating will not be detected. Since this strategy involves
individual measurement only, it could be successful even if Alice sends the qubits one at a
time.

4. Our protocol

If our purpose is merely to achieve secure QSS, it is not difficult to defeat all the above
cheating strategies. For example, Alice can also prepare some qubits in pure states. She mixes
some of these qubits with qubit B (C or D) and sends them to Bob (Charlie or Diana). By
requiring the other parties to announce their measurement result on some of these pure states,

3



J. Phys. A: Math. Theor. 41 (2008) 415304 G P He et al

she can easily check whether there are intercept-resend attacks on the quantum communication
channel between her and each of the other three parties. After all three quantum channels are
verified secure, she tells the other three parties which qubits are B,C and D, then they can
accomplish the task of secret sharing with these qubits as described in the original protocol.
Alternatively, Alice can prepare many copies of Smolin states. She keeps qubits A,B and C
of each copy to herself, and sends qubit D to one of the other parties. By measuring A and B
in the Bell basis, she can collapse C and D into a Bell state. With the Bell state, she can set
up a secret key with each of the other parties with the well-known quantum key distribution
protocol [7]. Then the sharing of her secret data can easily be achieved with these secret keys.

However, these methods cannot help to answer the question of whether Smolin states and
bound entanglement can lead to secure QSS. This is because when pure states are involved,
or one party owns more than one qubit of a Smolin state, the correlation shared between the
parties is no longer pure bound entanglement. Therefore, it is important to study whether a
secure QSS protocol can be built in the framework where only Smolin states are used, and
each party can have one qubit of each copy of Smolin state only, i.e., the honest operation on
Smolin states must be local operations on single qubit rather than joint ones on many qubits.
Here we propose such an exotic protocol.

4.1. Our secure protocol

(1) Alice prepares n copies of the 4-qubit Smolin state in the form of equation (1). She keeps
qubit Aj of the j th copy (j = {1, . . . , n}) to herself, while sending qubits Bj to Bob,
qubits Cj to Charlie and qubits Dj to Diana (j = {1, . . . , n}) respectively. But different
from the original protocol, the order of the qubits sent to each party should be random.
That is, the qubit sequence received by Bob, for example, can be B3B6B5B11B4 . . . , while
that of Charlie and Diana can be C4C2C9C7C5 . . . and D4D20D7D3D1 . . . respectively.
The order should be kept secret by Alice herself. Also, each qubit should be sent only
after the receipt of the previous one is confirmed by the corresponding party.

(2) Alice tells the other three parties which observable to measure for each of their qubit. She
should guarantee that the same observable is measured for the four qubits of the same
copy. But which qubits belong to the same copy should still be kept secret.

(3) Alice randomly chooses some qubits for the security check. For these qubits, she asks
the other three parties to announce the result of their measurement, and checks whether
rAj

⊕ rBj
⊕ rCj

⊕ rDj
= 0 is satisfied whenever Aj , Bj , Cj and Dj belonging to the same

copies are chosen for the check.
(4) If no disagreed result is found, Alice randomly picks one of the remaining unchecked

copy (suppose that it is the kth copy) for secret sharing. She tells the other three parties the
position of qubits Bk,Ck and Dk , so that all the other three parties together can reconstruct
Alice’s secret bit rAk

for this copy from the equation rAk
⊕ rBk

⊕ rCk
⊕ rDk

= 0.

Now we show that the following three important features together make our protocol
secure against known cheating strategies: (i) the randomness in the secret order of the qubits
being sent; (ii) each qubit is sent only after the receipt of the previous one is confirmed; (iii) it
is decided by Alice which observable the other parties should measure, and it is not announced
until the receipt of all qubits is confirmed.

Let us consider the most severe case where the number of cheaters is as large as possible.
As stated above, Alice is always assumed to be honest in QSS. Now if all the other three parties
are cheaters, then they can surely obtain the secret data because any secret sharing protocol
allows the secret to be retrievable when all the three parties collaborate, even without cheating.
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Therefore it is natural to assume that there are two cheaters at the most. For concreteness
and without loss of generality, here we study the case where Diana is honest while both Bob
and Charlie are cheaters and they can perform any kind of communication (either classical
or quantum) with each other. In fact, due to the symmetric form of Smolin states, the same
security analysis on this case can also apply to the cases where the two cheaters are Bob and
Diana, or Charlie and Diana. Also, note that external eavesdroppers have less advantages
than internal cheaters since they can attack the quantum communication channel only, while
cannot alter the announcement sent via the classical channel to cover their attacks. Thus if
a QSS protocol is proven secure against internal cheaters, it is also secure against external
eavesdroppers. Therefore, the case studied here is sufficient for the security proof.

Let us formulate the model of the cheating strategy of the cheaters Bob and Charlie.
Suppose that they intercepted a qubit being sent to Diana. Due to the features (ii) of our
protocol, they must decide immediately what kind of qubit should be resent to Diana. There
can be four choices: (a) resend the intercepted qubit intact to Diana; (b) perform an operation
(including projecting the state into a certain basis, performing a unitary transformation, or
making it entangled with other systems, etc) on the intercepted qubit, and then send it to
Diana; (c) prepare another qubit, which may even entangled with other systems kept by Bob
and Charlie, and send it to Diana; and (d) send Diana another qubit which was sent to Bob
or Charlie, or is previously sent to Diana but intercepted by Bob and Charlie. Choice (a) is
obviously no longer a cheating. Meanwhile, all the other choices can be summarized as: Bob
and Charlie prepare the following system:

|bc ⊗ d〉 =
∑

i

|βi〉bc ⊗ |γi〉d . (5)

Here system d is the qubit they will resend to Diana, while system bc can be the system kept
at their side and the environment, and may even include the systems of Alice’s and Diana’s
in choices (b) and (d), and i covers all possible states of these systems. Note that if they
measure the original qubit and then send Diana the resultant state in choice (b), then system
d is in a pure state that does not entangle with system bc, which is simply a special case of
equation (5).

After Diana receives the qubit, due to feature (iii) of our protocol, the cheaters cannot
control the result of Diana’s measurement. Since the qubit is not the original one, Diana’s
result does not always show correlation of Smolin states. To avoid the uncorrelated result
from being detected by Alice, the only method left for the cheaters is to adjust their own
announcement in step (3) of the protocol so that their result looks to be correlated with that of
Diana’s. Indeed, after step (2) they can know what result should have been found by Diana
by measuring the original qubit they intercepted, and it is also possible for them to know the
actual result of Diana’s measurement by properly measuring the system bc (if it is completely
kept at their side) after they monitor Alice’s announcement to Diana in step (2). However,
when they need to determine their announcement in step (3), Alice has not announced the
ordering of the qubits (i.e., which qubits belong to the same copy of Smolin state) yet. Note
that it is insufficient for Bob and Charlie to obtain information on this ordering by comparing
the measurement directions Alice announced in step (2) either. This is because there are only
three measurement directions (corresponding to the three Pauli matrices) in total, while the
number of copies of Smolin state is large. Consequently, there will be a large number of qubits
which do not belong to the same copy of Smolin state, while the measurement directions listed
by Alice are the same. As the number of copies of Smolin state used in the protocol increases,
the amount of mutual information on the ordering Bob and Charlie gain by comparing the
measurement directions will drop exponentially to zero. Therefore, for the qubits chosen for
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the security check, feature (i) ensures that Bob and Charlie do not know which announcement
of their own should be adjusted. Then for any single copy of Smolin state chosen for the
security check in step (3), the cheaters stand a non-trivial probability (denoted as ε) of making
an inconsistent announcement. The total probability for the cheaters to escape the detection
will be at the order of (1 − ε)m, where m is the number of copies of Smolin state to which
Bob and Charlie apply the attack. This probability drops exponentially to zero as m increases,
so the cheating will inevitably be detected if m is large. On the other hand, if m is small, the
probability for these m copies of Smolin state to be chosen as the kth copy for the final secret
sharing in step (4) will drop to zero as the total number of copies of Smolin state used in the
protocol increases, so that the cheating is fruitless. Thus it is proven that our protocol is secure
against the cheating strategy above.

It is important to note that in our protocol, after Alice performs permutation on all
Smolin states, the resultant states are still bound-entangled. The reason is that the permutation
operation can in fact be viewed as a local operation, because in step (1) of the protocol, the
qubit sequence received by Bob is merely the permutation of all Bj ’s (e.g., B3B6B5B11B4 . . .),
while that of Charlie and Diana are all Cj ’s and Dj ’s respectively. There is no joint operation
between the qubits A,B,C and D. That is, suppose that the four participants share many copies
of Smolin state, each participant has one qubit from each copy. Then the above permutation
can be accomplished by each participant locally. It is a known fact that Smolin states cannot
be distilled to pure entangled form with LOCC. Therefore the resultant states still cannot be
distilled with LOCC either, thus it still satisfies the definition of bound entangled states. For
this reason, what we achieved here is not merely another QSS protocol. The significance of
our result is that the QSS protocol proposed here is based on bound entangled state alone.

We have to point out that we currently cannot prove the generality of the model of the
cheating strategy we studied above, because there may potentially exist strategies which are
beyond our current imagination. Therefore, whether our specific protocol is unconditionally
secure against any cheating strategy or not is still an open question. Nevertheless, the above
model seems to cover all attacks currently known. Therefore, before a different cheating
strategy fell outside the above model could be found in the future, our result seems to give a
positive answer to the question of whether Smolin states alone can lead to secure QSS. This is
in contrast to the conclusion of [6].

It also seems that generalized Smolin states [2] can lead to secure quantum secret
sharing between more participants too. Here the generalized Smolin states mean the 2n-
qubit (n > 2) bound entangled states defined as follows. Let U(m)

n = I⊗n−1 ⊗ σm

(m = 0, 1, 2, 3, n = 1, 2, 3, . . .) be a class of unitary operations, where σ0 = I is the identity
acting on the two-dimensional Hilbert space C2 and σi (i = 0, 1, 2, 3) are the standard Pauli
matrices. Let ρ2 = |�−〉〈�−|, and denote the density matrix of the original 4-qubit Smolin
state (equation (1)) as ρ4. Then the density matrix of 2n-qubit (n > 2) generalized Smolin
state is

ρ2n = 1

4

3∑

m=0

U
(m)

2(n−1)ρ2(n−1)U
(m)

2(n−1) ⊗ U
(m)
2 ρ2U

(m)
2 . (6)

(Please see [2] for details.) When the state is shared by 2n parties (each party has one
qubit) and they measure the same observable, their results will always satisfy

∑2n
j=1 ⊕rj = 0.

Therefore we can see that a secure quantum secret sharing between Alice and other (2n − 1)

parties can be accomplished with a protocol similar to our above secure protocol with original
Smolin states, by including the following main features. (i) Alice prepares many copies of the
2n-qubit generalized Smolin state, and sends them to the other parties in random order. It is
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Figure 1. The quantum circuit for generating theSmolin state.

not announced which qubits belong to the same copy, until all secure checks are successfully
finished. (ii) Each qubit is sent only after the receipt of the previous one is confirmed. (iii) It is
decided by Alice which observable the other parties should measure, and it is not announced
until the receipt of all qubits is confirmed.

5. Summary and discussions

Thus we proposed a QSS protocol secure against known cheating strategies. We would like
to emphasize that the present protocol is, to our best knowledge, the first example of secure
QSS in terms of bound entangled states alone. This result suggests a positive answer to the
question in [2, 3] regarding whether Smolin states can lead to secure QSS. As to the more
general question in [3] regarding whether there are cases when violation of local realism is a
necessary but not sufficient condition for QSS, our result seems to suggest that we need not
search for such cases in the framework of the original and generalized Smolin states.

Our protocol is also feasible for practical implementation. At the first glance, there seems
to have a difficulty since the qubits received by Bob, Charlie and Diana in step (1) need to
be kept unmeasured until Alice announces which observable to measure in step (2). To date,
keeping a quantum state for a long period of time is still a technical challenge. Nevertheless,
in practice Alice can use the well-known quantum key distribution protocol (e.g., [7]) to set
up a secret string with each of the other parties beforehand, so that she can tell him secretly
which observable he is to measure. Then delaying the measurement is no longer necessary.
Therefore our protocol can be implemented as long as a source of Smolin states is available.
Though in this case, not merely bound entangled states are used in the protocol, it is made
simple to realize secure QSS with state-of-the-art technology.

Finally, we would like to propose a feasible scheme to prepare Smolin states
experimentally [2]. The quantum circuit for this scheme is shown in figure 1. The input
part contains six qubits, in which the ancillary qubits α and β are initialized in state | + +〉αβ

(here, |+〉 = (|0〉 + |1〉)/√2) and the target qubits in the tensor product of two Bell states
|�+〉AB ⊗|�+〉CD . First, let β be the control qubit and perform the controlled-σz operations on
qubits βA and βC, respectively. Then, let α be the control qubit and perform the controlled-σx

operations on qubits αB and αD, respectively. This procedure of the target qubits can be
formulated by

ρS
ABCD = Trαβ[UρinU

†], (7)
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where the input state is ρin = |ψ〉in〈ψ | with |ψ〉in = | + +〉αβ ⊗ |�+〉AB ⊗ |�+〉CD , and the
unitary transformation takes the form

U = |00〉αβ〈00| ⊗ IABCD + |01〉αβ〈01| ⊗ σA
z σC

z IBD + |10〉αβ〈10| ⊗ IACσB
x σD

x

+ |11〉αβ〈11| ⊗ σA
z σB

x σC
z σD

x . (8)

After this procedure, the output state will be the desired quantum state, i.e., the Smolin state
ρS

ABCD . Therefore with any source of Bell states currently available, Smolin states may be
generated with this scenario, and thus our protocol is expected to be implemented in principle
in near future.
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